DUNCAN FLOOD MITIGATION ANALYSIS

Jordan Rae Aguirre

Farraj Alharbi

James Huggins

Tyler Saganitso

Final Presentation December 9, 2016

Project Background

- Client
 - Phil Ronnerud, P.E., Greenlee County Engineer
- Technical Advisor
 - Tom Loomis, P.E., RLS, CFM, Flood Control District of Maricopa County
- Request
 - Analyze possible mitigation measures for Duncan flooding
- Purpose
 - Provide analysis for structure-based, vegetation management, & encroachment removal

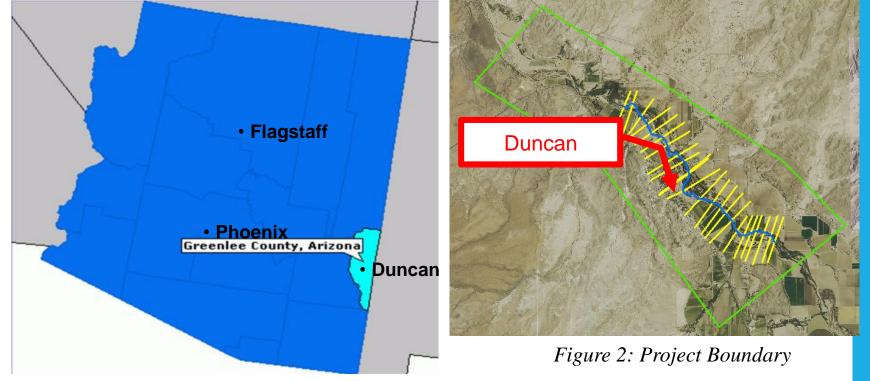


Figure 1: Project Site Location [1]

Schedule (Projected)

Task Name	Start	Finish	
1.0 Data Collection	Thu 9/1/16	Fri 9/2/16	
1.1 County Data	Thu 9/1/16	Thu 9/1/16	
1.2 NAU Crown Engineering Data	Thu 9/1/16	Thu 9/1/16	
1.3 FEMA Data	Fri 9/2/16	Fri 9/2/16	
2.0 Hydraulics: 2D Modeling	Mon 9/5/16	Fri 11/18/16	
2.1 Model Parameters	Mon 9/5/16	Tue 9/20/16	
2.1.1 Grid System	Mon 9/5/16	Tue 9/13/16	
2.1.2 Manning's Number	Wed 9/14/16	Thu 9/15/16	
2.1.3 Courant & DEPTOL Values	Fri 9/16/16	Mon 9/19/16	
2.2 Two Dimensional Modeling	Wed 9/21/16	Wed 11/16/16	
2.2.1 FLO-2D Pro & RAS-2D	Wed 9/21/16	Wed 11/16/16	
2.2.1.1 Existing Conditions	Wed 9/21/16	Wed 11/16/16	

Task Name	Start	Finish
2.2.1.3 Proposed Levee	Mon 10/10/16	Wed 11/16/16
2.2.1.4 Gila River Restoration	Mon 10/10/16	Wed 11/16/16
3.0 Model Analysis	Thu 11/17/16	Fri 11/18/16
4.0 FLO 2D Pro & HEC-RAS 2D Model Comparison	Mon 11/21/16	Wed 11/30/16
4.1 Cost Analysis	Mon 11/21/16	Tue 11/22/16
4.2 Recommended Solutions	Wed 11/23/16	Mon 11/28/16
4.3 Impacts	Tue 11/29/16	Fri 12/2/16
5.0 Project Management	Thu 9/1/16	Fri 12/16/16
5.1 Coordination	Thu 9/1/16	Fri 12/16/16
5.2 50% Design Report	Mon 9/26/16	Thu 10/13/16
5.3 Final Presentation	Wed 11/30/16	Wed 12/7/16
5.4 Impacts Report	Fri 12/9/16	Fri 12/9/16
5.5 Final Report	Fri 12/16/16	Fri 12/16/16
5.6 Website	Fri 12/16/16	Fri 12/16/16

Schedule (Actual)

Task Name	Start	Finish	
1.0 Data Collection	Thu 9/1/16	Fri 9/2/16	
1.1 County Data	Thu 9/1/16	Thu 9/1/16	
1.2 NAU Crown Engineering Data	Thu 9/1/16	Thu 9/1/16	
1.3 FEMA Data	Fri 9/2/16	Fri 9/2/16	
2.0 Hydraulics: 2D Modeling	Mon 9/5/16	Fri 11/18/16	
2.1 Model Parameters	Mon 9/5/16	Tue 9/20/16	
2.1.1 Grid System	Mon 9/5/16	Tue 9/13/16	
2.1.2 Manning's Number	Wed 9/14/16	Thu 9/15/16	
2.1.3 Courant & DEPTOL Values	Fri 9/16/16	Mon 9/19/16	
2.2 Two Dimensional Modeling	Wed 9/21/16	Wed 11/16/16	
2.2.1 FLO-2D Pro	Wed 9/21/16	Wed 11/16/16	
2.2.1.1 Existing Conditions	Wed 9/21/16	Wed 11/16/16	

Task Name	Start	Finish	
2.2.1.3 Proposed Levee	Mon 10/10/16	Wed 11/16/16	
2.2.1.4 Gila River Restoration	Mon 10/10/16	Wed 11/16/16	
3.0 Model Analysis	Thu 11/17/16	Fri 11/18/16	
4.0 FLO 2D Pro Model Comparison	Mon 11/21/16	Wed 11/30/16	
4.1 Cost Analysis	Mon 11/21/16	Tue 11/22/16	
4.2 Recommended Solutions	Wed 11/23/16	Mon 11/28/16	
4.3 Impacts	Tue 11/29/16	Fri 12/2/16	
5.0 Project Management	Thu 9/1/16	Fri 12/16/16	
5.1 Coordination	Thu 9/1/16	Fri 12/16/16	
5.2 50% Design Report	Mon 9/26/16	Thu 10/13/16	
5.3 Final Presentation	Mon 11/28/16	Wed 12/7/16	
5.4 Impacts Report	Fri 12/9/16	Fri 12/9/16	
5.5 Final Report	Fri 12/16/16	Fri 12/16/16	
5.6 Website	Fri 12/16/16	Fri 12/16/16	

Models Simulated

- 1978 Flood
 - Q=57,800 cfs
 - Used to model the exiting conditions (calibration)
- Gila River Restoration
 - Q=47,400 cfs (100-yr)
 - WWTF removed
- Levee
 - Q=47,400 cfs (100-yr)
 - Determine minimum height
- Levee with Gila River Restoration
 - Q=47,400 cfs (100-yr)
 - WWTF removed

Figure 3: Bridge Crossing the Gila River in Duncan, AZ [5]

[5] R. Shantz, "Photograph of Flood on Gila River 2/13/05 near Duncan, Arizona", Rshantz.com, 2005. [Online]. Available: http://www.rshantz.com/Scenes/Arizona/Southeast/20050213GilaFlood/20050213Flood13.htm. [Accessed: 15- Apr- 2016].

Hydrographs

- 1978 Flow: 57,800 cfs
- 100-year Flow: 47,400 cfs
- 25-year Flow: 28,000 cfs
- 10-year Flow: 18,100 cfs

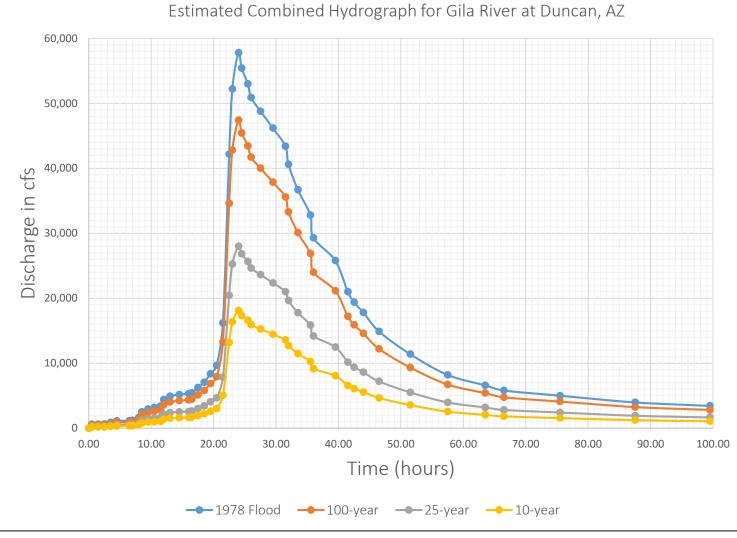


Figure 4: Hydrograph for varied flows

Model Preparation

- ArcGIS
 - Cross-sections close to bridge
 - Added Vertices
- Site Visit
 - Simpson Hotel
 - High Water Mark = 9.3 ft
 - Low Water Mark = 2.4 ft
 - County Building
 - High Water Mark = 6.5 ft
 - Low Water Mark = 1.8 ft

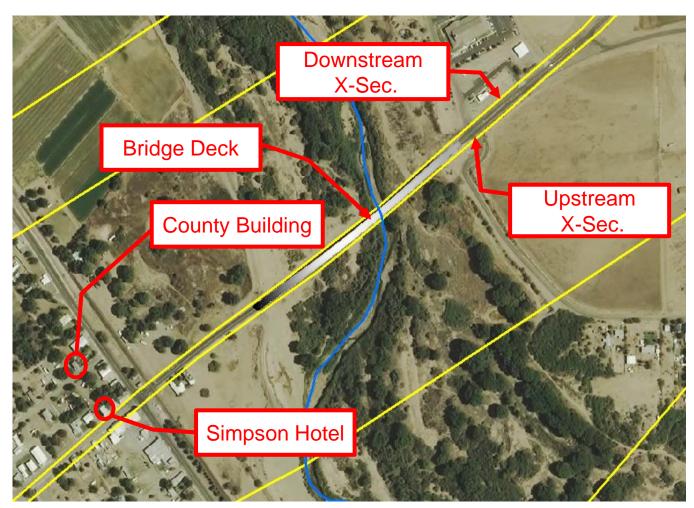


Figure 5: Bridge Deck Cross Sections

Model Parameters

- ArcGIS
 - Surface feature characterization

1

2

3

4 5

6

7

8

- Defines spatiall roughness
- Defines flow of

feature erization spatially-varied ess flow obstruction	S				Bridge Deck			
Priority			Stark 3	1916		head	M. K	
Paved Surface								
Buildings		1. 10		Cor Star	Sec. 19		24	
Low Vegetation		7				(• k)		
Wash Bottom								7000
Cottonwood				AP &	1 · · · ·			
Heavy Vegetation							A CAR	
Agriculture			1/30 m.			1.1.4		
Bare Ground		. HEARING		6 84		Ales .	A set	

Figure 6: Surface feature Characterization

James 8

Model Parameters

- Friction Loss (Manning's n)
 - Obtained n-value from manuals and technical advisor input
 - The n-values points varies along each surface feature characterization

Figure 7: ArcGIS n-values layer

Bridge and Piers

- HEC-RAS
 - Overbanks
 - Bridge deck elevation
 - Model Piers
 - Change in Bridge Capacity

Figure 8: Downstream view of bridge

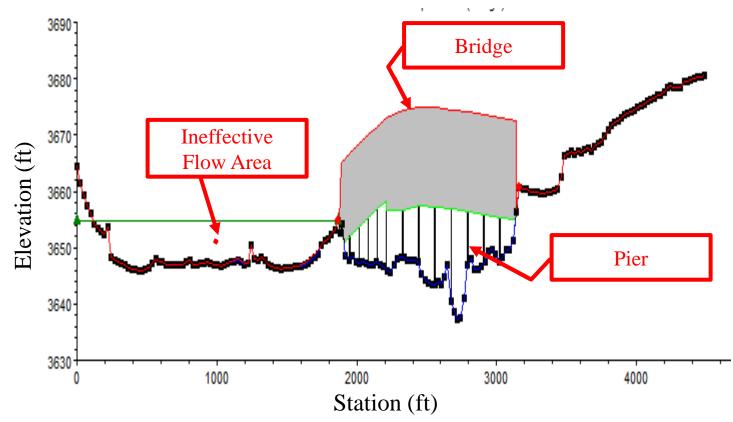


Figure 9: Upstream cross section view with bridge and piers

HEC-RAS to Flo-2D Pro

•HEC-RAS

• Define depth vs. discharge

•Model hydraulic structures

•Flo 2D Pro Model

•271,399 grids

•Allows manual flow input

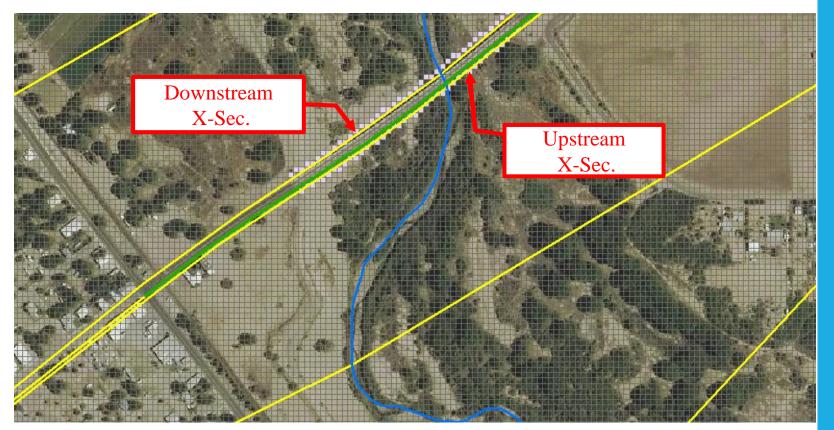


Figure 10: 25'x 25'Grids-ArcMap

Existing Conditions

Table 1: Survey data from site visit

Location	Max Survey Depth (ft)	Model Depth (ft)
Simpson Hotel	9.3	7.5
County Building	6.5	7.5

- 1978 Flow: 57,800 cfs
- 23 hours to reach town
- 25 hours to reach max depth in town

Figure 11: Maximum depth results of existing conditions model

Gila River Restoration

• Revised n-values

Old n-values

0.02

0.03

0.035

0.04

0.045

0.08

0.12

n value

• Based on approximation of tree removal and tree trimming

0.02

0.03

0.04

0.06

0.08

• Removed WWTF

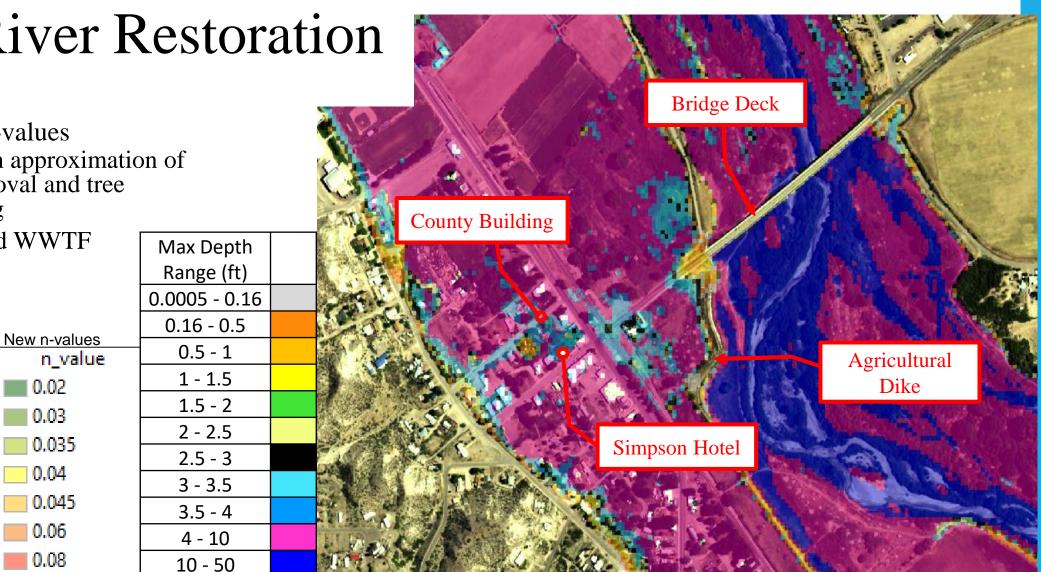


Figure 12 : Gila river restoration maximum depth results

Proposed Levee

- 100-year Flow: 47,400 cfs
- Levee height: 23 ft
- 3 feet of freeboard [2]

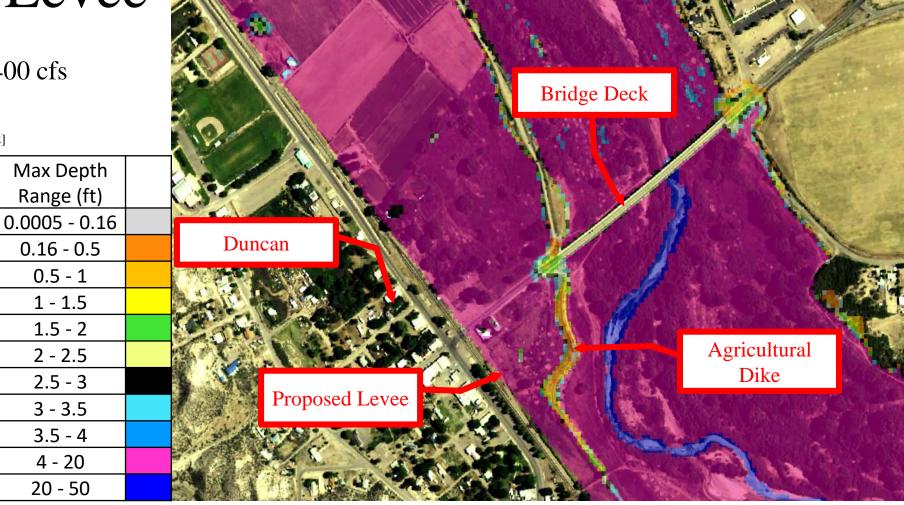


Figure 13: Maximum depth results of proposed levee model

Combined Model

- Proposed levee with Gila river restoration and WWTF removed
- 100-year Flow: 47,400 cfs
- Levee height: 20 ft

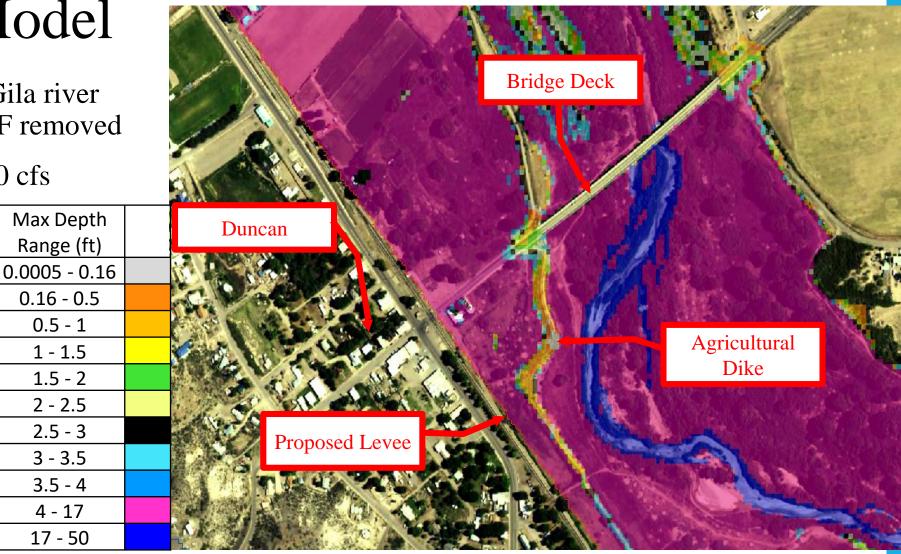


Figure 14 : Proposed levee with Gila river restoration and WWTF removal

Proposed Levee Impacts

Table 2: Impacts for the proposed levee

	Social Impacts	Environmental Impacts	Economic Impacts
Positives	 Safety for residents in downtown Duncan 	 Still providing habit for most animals 	 Construction of levee brings jobs into Duncan
Negatives	 Property acquisition Relocations of homes Birdwatching impacts 	Wildlife Concerns	 Maintenance costs of levee

Gila River Restoration Impacts

Table 3: Impacts for the Gila river restoration

	Social Impacts	Environmental Impacts	Economic Impacts
Positives	 Duncan's everyday life will stay the same 	 Invasive species will be removed 	 No need to maintain the growth of invasive species
Negatives	 Possible floodplain flooding still 	 Invasive species of trees will eventually return 	 Possible birdwatching visitors might be reduced

Cost Analysis

 Table 4: Cost analysis for provided solutions

-	Length (mi)	Cost (\$/mi)					Levee Cost	
Levee	1.73	3.75M					\$6,487,500	Combined
River	Tree Removal	Tree Trimming		Total Trees Trimmed	Total Cost for Tree Removal	Total Cost for Tree Trimming	Restoration Cost	Cost \$6,545,250
Restoration	\$300 per tree [3]	\$150 per tree [3]	150	85	\$45,000	\$12,750	\$57,750	
	Cost Per	Acres in						
Property	Acre	Duncan					Land Cost	
Acquisition	\$2,000	300					\$600,000	

[3] "How Much Does Tree Removal Cost?," TreeRemoval.com, 2015. [Online]. Available: http://www.treeremoval.com/costs/#averagecost. [Accessed 28 November 2016].

Staffing Cost

- Removed RAS-2D
 - Does not model the Hydraulic Structure the same as Flo-2D
 - Flo-2D also took longer than expected
- Removed Existing w/o Dike
 - Overtops at low flows
 - Similar results to
 existing conditions

Classification	Billing Rate (\$/hr)	Proposed Hours	Actual Hours	Proposed Cost	Actual Total Cost
SENG	117.51	169	156	\$19,859	\$18,332
ENG	70.11	300	278	\$21,033	\$19,491
INT	29.64	283	272	\$8,388	\$8,062
		752	706	\$49,280	\$45,884

Acknowledgements

- Client
 - Phil Ronnerud, P.E., Greenlee County Engineer
- Technical Advisor
 - Tom Loomis, P.E., RLS, CFM, FCDMC
- Grading Instructor
 - Mark Lamer, P.E.

Figure 15 : Site Visit in Duncan, AZ